

10MAT41

Fourth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Engineering Mathematics - IV

Time: 3 hrs .
Max. Marks: 100
Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Using Taylor series method, solve $\frac{d y}{d x}=x^{2}+y^{2}, y(0)=1$ at the point $x=0.2,0.3$ consider up to $4^{\text {th }}$ degree term.
(06 Marks)
b. Using Runge Kutta method of order 4, solve $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}$ with $y(0)=1$ at $x=0.2,0.4$ by taking step length h0.2.
(07 Marks)
c. Given $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2} \mathrm{xy}, \mathrm{y}(0)=1, \mathrm{y}(0.1)=1.0025, \mathrm{y}(0.2)=1.0101, \mathrm{y}(0.3)=1.0228$. Compute y at $\mathrm{x}=0.4$ by Adams - Bash forth predictor - corrector method use corrector formula twice.
(07 Marks)
2 a. Evaluate y and z at $\mathrm{x}=0.1$ from the Picard's second approximation to the solution of the following system of equations given by $y=2$ and $z=1$ at $x=0$ initialiy $\frac{d y}{d x}=x+z$ $\frac{d z}{d x}=x-y^{2}$.
(06 Marks)
b. Given $y^{\prime \prime}=x^{3}\left(y+y^{\prime}\right)$ with the initial condition $y(0)=1 \quad y^{\prime}(0)=0.5$ compute $y(0.1)$ by taking $h=0.1$ and using $4^{\text {th }}$ order Runge Kutta method.
(07 Marks)
c. Applying Milne's method compute $y(0.4)$ Given that y satisfies the equation $\frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}-6 y=0$ and y and y^{\prime} are governed by the following values
$y(0)=1, y(0.1)=1.03995, \quad y(0.2)=1.138036$
$y(0.3)=1.29865, \quad y^{\prime}(0)=0.1, \quad y^{\prime}(0.1)=0.6955$
$y^{\prime}(0.2)=1.258, y^{\prime}(0.3)=1.873$.
(07 Marks)
3 a. Derive Cauchy Riemann Equation in Cartesian form.
(06 Marks)
b. Prove that for every analytic function $f(z)=u+$ iv the two families of curves $u(x, y)=C_{1}$ and $\mathrm{v}(\mathrm{x}, \mathrm{y})=\mathrm{C}_{2}$ form an orthogonal system.
(07 Marks)
c. If $u-v=(x-y)\left(x^{2}+4 x y+y^{2}\right)$ and $f(z)=u+$ iv is analytic function of $z=x+$ iy find $f(z)$ interms of $f(z)$.
(07 Marks)
4 a. Find the bilinear transformation that maps the points $\mathrm{z}=0, \mathrm{i}, \infty$ onto the points $w=1,-i,-1$ respectively, find the invariant points.
(06 Marks)
b. Discuss the transformation $w=e^{\text {z }}$.
(07 Marks)
c. Evaluate $\int_{\mathrm{C}} \frac{\sin \pi z^{2}+\cos \pi \mathrm{z}^{2}}{(\mathrm{z}-1)^{2}(\mathrm{z}-2)} \mathrm{dz}$, where c is the circle $|\mathrm{z}|=3$.
(07 Marks)

PART - B

5 a. Starting from Laplace differential equation. Obtain Bessel's differential equation as

$$
\begin{equation*}
x y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0 \tag{08Marks}
\end{equation*}
$$

b. If $x^{3}+2 x^{2}-x+1=a P_{0}(x)+b P_{1}(x)+c P_{2}(x)+d P_{3}(x)$ find the value of a, b, c, d.
(06 Marks)
c. Derive Rodrigue's formula $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d y}{d x^{n}}\left(x^{2}-1\right)^{n}$
(06 Marks)

6 a. Define axioms of probability. Prove that,

$$
\mathrm{P}(\mathrm{~A} \cup \mathrm{~B} \cup \mathrm{C})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{C})+\mathrm{P}(\mathrm{~A} \cap \mathrm{~B} \cap \mathrm{C})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})-\mathrm{P}(\mathrm{~B} \cap \mathrm{C})-\mathrm{P}(\mathrm{C} \cap \mathrm{~A})
$$

(06 Marks)
b. A solar water heater manufactured by a company consists of two parts the heating panel and the insulated tank. It is found that 6% of the heaters produced by the company have defective heating panels and 8% have defective tank. Find the percentage of non defective heaters produced by the company.
(07 Marks)
c. A box contains 500 IC chips of which 100 are manufactured by company X and the rest by company Y. It is estimated that 10% of the chips made by company X and 5% made by company Y are defective. If a randomly selected chip is found to be defective find the probability that it came from company X .
(07 Marks)
7 a. A random variables X takes the values $-3,-1,2$ and 5 with respective probabilities
$\frac{2 k-3}{10}, \frac{k-2}{10}, \frac{k-1}{10} \frac{k+1}{10}$. Find the value of k and i) $p(-3<x<4) \quad$ ii) $p(x \leq 2)$.
(06 Marks)
b. Find the mean and variance of binomial distribution.
(07 Marks)
c. In an examination 7% of students scores less than 35% marks and 89% of students score less than 60% marks. Find the mean and standard deviation of the marks are normally distribute, it is given that $\mathrm{P}(0<\mathrm{z}<1.2263)=0.39$ and $\mathrm{P}(0<\mathrm{z}<1.4757)=0.43$.
(07 Marks)

8 a. Explain the following terms
i) Null hypothesis
ii) Type I and Type II error
iii) Confidence limits.
(06 Marks)
b. A coin is tossed 1000 times and it turn up head 540 times decide on the hypothesis that the coin is unbiased.
(07 Marks)
c. A certain stimulus administered to each of the 12 patients resulted is the following change is blood pressure $5,2,8,-1,3,0,6,-2,1,5,0,4$ can it be calculated that the stimulus will increase the blood pressure ($\mathrm{t}_{0.05}$ for 11 df 2.201 .)
(07 Marks)

Fourth Semester B.E. Degree Examination, Dec.2018/Jan. 2019

 Microcontroller

 Microcontroller}

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Explain with a neat block diagram architecture of 8051 micracontroller.
(12 Marks)
b. Explain Harward and Von-Neumann CPU architectures with necessary diagrams. (08 Marks)

2 a. Explain the different addressing modes supported by $\mathbf{8 0 5 1} \mu \mathrm{c}$ with an example for each.
(10 Marks)
b. Correct the following instructions if found to hawe any wrong syntax. Explain the operation of the corrected instructions:
(i) MOVxR0, R1
(ii) MOV A, \# B
(iv) XCHG A1, R2
(v) ADD A, @ B
(iii) MOV 77h, A8H
(10 Marks)
3 a. Write a program that computes the number of zeros in the following 16-bit stream: 0101101001011010
(10 Marks)
b. Assume Timer 1 is operating in mode 1. It is required to schedule a new task after $0.0 £$ second. If the timer oscillator operates at 10.0 NHz , how should the timer registers be configured for this operation.
(10 Marks)
4 a. Draw the internal struoture of port ' 0 ' and explain its operation.
(10 Marks)
b. Write a 'C' programin to monitor the status of a switch 'SW' connected to pin P2.7 and perform the following:
i) If $\mathrm{SW}=0$, the stepper motor rotates clockwise
ii) If SW = 1, the stepper motor rotates counter clockwise (ACW)

Use the wave drive 4 -step sequence.
(10 Marks)

PART - B

5 a. Explain interrupt vector table.
(10 Marks)
b. Write the bit pattern offTCON SFR and explain.
(10 Marks)
6 a. Hrow many types of serial communications are there? Name them and explain each type.
(10 Marks)
b. Write a program to serially transmit the message 'GOOD' continuously at a baud rate of 9600,8 -bit čata and 1 stop bit.
(10 Marks)
7 a. With a neat block diagram, explain the architecture of MSP 430μ controller.
(10 Marks)
b. Explain with an example of MOV instruction the different addressing modes of MSP430.
(10 Marks)
8 a. Assume that a 60 Hz external clock is being fed into pin T 1 (P3.5). Write an 8051 C program for oounter 1 in mode 2 to display the seconds and minutes on P1 and P2 respectively.
b. Explain the importance of TI and RI flag used in serial data transfer.

Fourth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Control Systems

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. Define Control System. Give the difference between open loop and closed loop control system, with an example.
(06 Marks)
b. For the mechanical system shown in fig.Q1(b),
i) Write the nodal circuit
ii) Write the performance equation
iii) Write force voltage and force current analogous circuits.
(09 Marks)

Fig.Q1(b)

c. For the mechanical system shown in fig.Q1(c),
i) Write the nodal circuit
ii) Write the performance equations.
(05 Marks)

Fig.Q1(c)

2 a. Find the transfer function $C(s) / R(s)$, using block diagram reduction technique for the figure shown in fig. Q2(a).
(10 Marks)

Fig.Q2(a)

b. For the signal flow graph, shown in fig.Q2(b), find the transfer function using Mason's gain formula.
(10 Marks)

Fig.Q2(b)

1 of 3

3 a. For the unity feedback system having open - loop transfer function $G(s)=\frac{K(s+2)}{S\left(s^{3}+7 s^{2}+12 s\right)}$, find i) Type of the system *ii) Error co-efficient
iii) Steady state error when the input of the system is $\frac{R}{2} t^{2}$.
(10 Marks)
b. A feedback control system shown has a damping factor of 0.8 . Determine constant K and all the time domain specifications for the system shown in fig.Q3(b).

10 Marks)

Fig.Q3(b)

4 a. What are the necessary conditions for a system to be stable according to Routh - Hurwitz criteria?
(04 Marks)
b. The open loop transfer function of a unity feedback control system is given by $\mathrm{G}(\mathrm{s})=\frac{\mathrm{K}}{(\mathrm{s}+2)(\mathrm{s}+4)\left(\mathrm{s}^{2}+6 \mathrm{~s}+25\right)}$
i) Find the range of K for which the system is stable.
ii) Find K for which system oscillates and what is the corresponding frequency of oscillation.
(10 Marks)
c. Determine the stability of control system with characteristic equation.

$$
s^{5}+s^{4}+2 s^{3}+2 s^{2}+3 s+5=0
$$

(06 Marks)

PART - B

a. The open - loop transfer function of a feedback control system is given by
(12 Marks)

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{\mathrm{K}}{\mathrm{~S}(\mathrm{~s}+1)(\mathrm{s}+2)}
$$

Construct the root locus of the control system and find the range of K for which the closed loop system is stable
b. Sketch the root locus of the control system with open loop transfer function
$\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{\mathrm{K}}{\mathrm{s}^{2}+10 \mathrm{~s}+100}$. Determine the stability of closed loop system.
(08 Marks)
a. A unity feedback control system has
(10 Marks)
$\mathrm{G}(\mathrm{s})=\frac{80}{\mathrm{~S}(s+2)(s+20)}$. Draw the Bode plot and determine Gain margin, Phase margin, W_{ge} and W_{pc}. Comment on stability.
b. Determine the transfer function from the magnitude plot shown in fig. Q6(b).
(10 Marks)

Fig.Q6(b)

2 of 3

7 a. Construct the Nyquist plot for the control system with
(14 Marks)
$G(s) H(s)=\frac{K(s+1)}{S(s-1)}$. From the plot, determine the stability of closed loop system.
b. State Nyquist stability criteria and explain the procedure to find the stability of the system using Nyquist criteria.
(06 Marks)
8 a. State the advantages of state space approach.
(04 Marks)
b. Obtain the state model of the given electrical network in standard form shown in fig. Q8(b). Given at $\mathrm{t}=\mathrm{t}_{\mathrm{o}}, \mathrm{i}(\mathrm{t})=\mathrm{q}\left(\mathrm{t}_{\mathrm{o}}\right)$ and $\mathrm{V}_{\mathrm{o}}(\mathrm{t})=\mathrm{V}_{\mathrm{o}}\left(\mathrm{t}_{\mathrm{o}}\right)$.
(06 Marks)

Fig.Q8(b)

c. State and prove the properties of state transition matrix.
(10 Marks)

10EE44

Fourth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Field Theory

Time: 3 hrs.
Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. State and explain Gauss's law.
(06 Marks)
b. A line charge densities of $24 \mathrm{nc} / \mathrm{m}$ is located in free space on the line $\mathrm{y}=1, \mathrm{z}=2$.
i) Find E at $p(6,-1,3)$
ii) What point charge Q_{A} should be located at $\mathrm{Q}(-3,4,1)$ to cause E_{y} to be equal to zero at point P.
(08 Marks)
c. A vector field $\overline{\mathbb{I}}=\left(\frac{5 r^{3}}{4}\right) \overline{\mathrm{a}}_{\text {r }}$ given in spherical coordinates. Evaluate both sides of divergence theorem for the volume enclosed between $\theta=0^{\circ}$ to $\theta=\frac{\pi}{4}$ and $\mathrm{r}=4 \mathrm{~m}$. (06 Marks)

2 a. Show that the vector electric fiald intensity E is the negative gradient of scalar electric potential V.
(06 Marks)
b. Obtain the boundary conditions between the two dielectric materials of permittivities ε_{1} and ε_{2}.
(08 Marks)
c. Give $V=2 x^{2} y-5 z$ at point $p(-4,3,6)$. Find the potential, eleatric field intensity and volume charge density.
(06 Marks)
3 a. State and prove uniqueness theorem.
(08 Marks)
b. Two concentric conducting splieres have radius of 3 cm and 5 cm . The region between them is filled with a homogeneous dielectric for which $\varepsilon_{r}=5$. If the potential of the inner sphere is 100 volts while that of the outer sphere is -100 volts, find :
i) K
ii) \bar{E}
iii) \bar{D}
iv) the value of r at which $\mathrm{V}=0$.
(08 Marks)
c. If a potential $V=x^{2} y z+A y^{3} z$, firrd :
i) The value of ' A ', so that W satisfies the Laplace's equation
ii) With tilie value of ' A ' determine electric field at $(2,1,-1)$.
(04 Marks)
4 a. Using Biot-Savart law, obtain the magnetic field intensity expression due to an infinite length conductor carrying current I amps along Z - direction.
(06 Marks)
b. Discuss the concept of scalar and vector magnetic potential.
(08 Marks)
c. In cylindrical aoordinates a magnetic field is given as $H=\left[2 \rho-\rho^{2}\right] \bar{a}_{\phi} A / m$.
i) Determine the current density
ii) What total current passes through the surface $z=0,0 \leq \rho \leq=1$ in the \bar{a}_{z} direction.
(06 Marks)

PART - B

5 a. Derive an expression for the force on a differential current carrying element.
(06 Marks)
b. A current filament carrying 8 A in the $\overline{\mathrm{a}}_{\bar{Z}}$ direction lies along the entire $\mathrm{z}-\mathrm{axis} \mathrm{n}$ free space. A rectangular loop connecting $\mathrm{A}(0,0.2,(\mathbb{0})$ to $\mathrm{B}(0,0.2,0.3)$ to $\mathrm{C}(0,0.7,0.3)$ to $\mathrm{D}(0,0.7,0.2)$
to A lies in the $\mathrm{x}=0$ plane. The lcop current is 3 mA and it flows in the $\overline{\mathrm{a}}_{\mathrm{z}}$ direction in the AB segment.
i) Find F on the AB segment
ii) Find F on the side DA
iii) Find $\mathrm{F}_{\text {total }}$ on the loop.
(08 Marks)
c. Define mutual inductance. Calculate the inductance of 400 turns wound on a solenoid with 10 cm diameter and 50 cm length. Assume that solenoid is in air.
(06 Marks)

6 a. What is inconsistency of Ampere's law with the equation of continuity? Derive the modified form of Aırpere's law of Maxwell.
(08 Marks)
b. Starting from Faraday's law of eleatromagnetic induction derive $\nabla \times \overline{\mathrm{E}}=-\frac{\partial \overline{\mathrm{B}}}{\partial \mathrm{t}}$. (06 Marks)
c. For the losses dielectric $\sigma=5 \mathrm{~s} / \mathrm{m}$ and $\varepsilon_{\mathrm{r}}=1$. The electric field intensity is $\mathrm{E}=100 \sin 10^{10} \mathrm{t}$. Find $\mathrm{J}_{\mathrm{C}}, \mathrm{J}_{\mathrm{D}}$ and frequency at which both have equal magnitude.
(06 Marks)

7 a. Determine the relation between E and H of an EM wave travelling in z - direction.
(10 Marks)
b. Obtain the solution of wave equation fon uniform plane wave propagating in free space.
(10 Marks)

8 a. With necessary equations, explain standing wave ration.
(10 Marks)
b. A $100 \mathrm{~V} / \mathrm{m}, 3 \mathrm{GHz}$ wave is propagating in material having $\varepsilon_{\mathrm{R} 1}=4, \mu_{\mathrm{R} 1}=1$ and $\sigma=0$. It is normal to another perfect dielectric in region $2, \mathbf{z}>0$, where $\varepsilon_{\mathrm{R} 2}=9, \mu_{\mathrm{R} 2}=1$. Calculate, pllase constants, coefficient of reflection, transmission and standing wave ratio.
(10 Marks)

Fourth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Advanced Mathematics - II

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions.

1 a. Prove that the angle between two lines whose direction cosines are $\left(l_{1}, m_{1}, n_{1}\right)$ and
(07 Marks)
b. Find the value of K if the angle between the lines with direction ratios $-2,1,-1$ and

$$
1,-K,-1 \text { is } \frac{2 \pi}{3} \text {. }
$$

(07 Marks)
c. Find the projection of the line segment $A B$ on $C D$ where $A=(3,4,5), B=(4,6,3)$, $\mathrm{C}=(-1,2,4), \mathrm{D}=(1,0,5)$
(06 Marks)
2 a. Derive the equation of the plane in the intercept form $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$.
(07 Marks)
b. Find the image of the point $(2,-1,3)$ in the plane $2 x+4 y+z-24=0$.
(07 Marks)
c. Find the equation of the plane containing the line $\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}$ and is perpendicular to the line $x-2 y+3 z=4$.
(06 Marks)
3 a. Show that the position vectors of the vertices of a triangle $2 j-j+k, i-3 j-5 k$ and $3 i-4 j-4 k$ form a right angled triangle.
(07 Marks)
b. Find the cosine and sine of the angle between the vectors $2 i-j+3 k$ and $i-2 j+2 k$.
(07 Marks)
c. Find the value of λ such that the vectors $\vec{a}=\lambda i-5 j-2 k, \vec{b}=-7 i+14 j-3 k$ and $\vec{c}=11 i+4 j+k$ are coplanar.
(06 Marks)
4 a. A particle móves along a curve $x=t^{3}-4 t, y=t^{2}+4 t, z=8 t^{2}-3 t^{3}$. Determine its velocity and acceleration and also the magnitude of velocity and acceleration at $\mathrm{t}=2$.
(07 Marks)
b. Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point $(2,-1,2)$.
(07 Marks)
c. Find the directional derivative of the function $\phi=x y z$ along the direction of the normal to the surface $x y^{2}+y z^{2}+\mathrm{zx}^{2}=3$ at the point $(1,1,1)$
(06 Marks)

5 a. If $\vec{F}=\nabla\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$ find $\operatorname{div} \vec{F}$ and $\operatorname{curl} \vec{F}$.
b. Show that curl $(\operatorname{grad} \phi)=0$.
c. Show that $\vec{F}=\frac{x i+y j}{x^{2}+y^{2}}$ is both solenoidal and irrotational.

6 a. Find the Laplace transform of t^{n}, where n is a positive integer.
(05 Marks)
b. Find $L(\sin 5 t \cos 2 t)$.
(05 Marks)
c. Find $L(t \cos a t)$.
(05 Marks)
d. Find $L\left(\frac{\cos a t-\cos b t}{t}\right)$.
(05 Marks)

7 a. Find $L^{-1}\left[\frac{s+5}{s^{2}-6 s+13}\right]$.
b. Find $L^{-1}\left[\frac{1}{s(s+1)(s+2)(s+3)}\right]$.
c. Find $L^{-1}\left[\log \left(\frac{s+a}{s+b}\right)\right]$.
(07 Marks)
(06 Marks)

8 a. Using Laplace transform solve $\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+4 y=e^{-t}, y(0)=0=y^{\prime}(0)$
(10 Marks)
b. Using Laplace transform solve $\frac{d x}{d t}+y=\sin t, \frac{d y}{d t}+x=\cos t$ given $x(0)=1, y(0)=0$
(10 Marks)

